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The standard construction of upwind difference schemes for hyperbolic systems of
conservation laws requires the full eigensystem of the Jacobian matrix. This system s
used to define the transformation into and out of the characteristic scalar fields, where
upwind differencing is meaningful. When the Jacobian has a repeated eigenvalue,
the associated normalized eigenvectors are not uniquely determined, and an arbitrary
choice of eigenvectors must be made to span the characteristic subspace. In this re-
port we point out that it is possible to avoid this arbitrary choice entirely. Instead, a
complementary projection technique can be used to formulate upwind differencing
without specifying a basis. For systems with eigenvalues of high multiplicity, this
approach simplifies the analytical and programming effort and reduces the compu-
tational cost. Numerical experiments show no significant difference in computed
results between this formulation and the traditional one, and thus we recommend its
use for these types of problems. This complementary projection method has other
applications. For example, it can be used to extend upwind schemes to some weakly
hyperbolic systems. These lack complete eigensystems, so the traditional form of
characteristic upwinding is not possibleg 1998 Academic Press

1. INTRODUCTION

The standard formulation of upwind difference schemes for hyperbolic system:
quires finding the Jacobian matrix of the flux function and the associated eigensy
(eigenvalues and left and right eigenvectors). The left eigenvectors define the tral
mation into the characteristic fields, the associated eigenvalues define upwind dire
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for these fields, and the right eigenvectors define the transformation back to the prin
variables.

These characteristic upwind schemes are generally considered to give the highest
numerical results. There is a vast literature on this subject (see, e.g., [4] and the refer
therein). Their only drawback is that they require specifying a complete eigensysten
the problem. In practice, this can involve considerable analytical work, as well as s
complications when the eigensystem lacks uniqueness (or even existence). In this
we point out that, in many cases, the most problematic portion of the eigensystem c:
avoided entirely.

As motivation, consider a system which has a repeated eigenvalue (characteristic s
A common example is the compressible, multispecies, multidimensional Euler equa
[3], where the convective flow velocity is an eigenvalue repeated once for each specie
each spatial dimension (see Section 4.3). In such a system, the distinct eigenvalue:
corresponding unique eigenvectors (up to scalar multiples), but the eigenvectors fc
repeated eigenvalue are not unique. The eigen-subspace is well defined, but an arl
choice of spanning eigenvectors must be made to obtain a complete eigensystem.
arbitrary vectors may form the great majority of the eigensystem.

When designing a numerical method for such a system, various criteria can be ap
to help select one eigenbasis from the infinitely many choices. For example, one can
for eigenvectors that are as sparse as possible, in order to save time projecting into a
of characteristic fields. One can also demand that the left and right eigenvector matric
numerically well conditioned (i.e., determinant near 1). Still, there is a high degree of
trariness left over, and for degenerate systems, there are typically a variety of eigensy
presented in the literature.

Our goal here is to present an alternative approach which eliminates the need tc
the ambiguous eigenbasis. The basic idea is to project data directly into the characte
subspace by using the complement of the projection operator defined by the unambi
part of the eigensystem. Componentwise upwind differencing can be applied direct
this characteristigectorfield, in contrast to the usual approach of upwinding characteris
scalar fields.

2. THE COMPLEMENTARY PROJECTION METHOD (CPM)

To describe the complementary projection technique in detail, we will show how it rel;
to the standard characteristic decomposition used in upwind discretization of a systen
hyperbolic conservation laws in one spatial dimension,

Ut + [F(U)]x = 0. (1)

Let the Jacobian of the flux functioflF (U)/dU, have left and right eigenvectols and
R, with associated eigenvalugs i = 1, ..., n. The left and right eigenvectors are furthe
required to be mutually orthonormal, ile.- Rl = 8j . Equivalently, the row matrix of left
eigenvectors, and column matrix of right eigenvectof®, are inversestR = RL = 1.

Given this complete eigensystem, any upwind difference scheme defined for scalar
tions can be extended to the hyperbolic system via a “characteristic decomposition.”
can be described fairly generally as follows: the spatial discretizatidi( 0] « is expressed
as a difference of fluxes between two grid cell walls. Thus the essential step is to con
the flux at a grid cell wallF,,, given the fluxesk-(U), at the nearby grid cell centers [4].
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The first step in defining the flux at a particular cell wall is to project the vector fluxes
each cell centerinto “scalar fluxes for itk characteristic field,” defined by = L‘w -F).
HereL! , R ,and\! are used todenote leftand right eigenvectors and eigenvalues evalu
at the wall in some fashion. Note the assumed orthonormality implies we can write
original vector flux in terms of these scalar fluxes as

FU)= f'RL + f2R2 4 ... + f"R". @)

This shows that we can think df R, as the vector contribution to the total flux from the
ith characteristic scalar flux, .

Next, for each scalar field the cell center characteristic fluxel,, are interpolated to
the cell wall of interest in an upwind fashion with the upwind direction defined by tl
corresponding “characteristic speed” at the wa]|, This yields the scalar characteristic
wall flux, f!.

Finally, the desired total wall flux vector is defined as the sum of all the characteri
vector contributions,

Fo=fIR: + f2R2 +... + fIR". (3)

To introduce the alternative approach, suppose that frornth@envalues we have
a p-fold repeated eigenvalue. Without loss of generality, we will assume that the f
p eigenvaluespl = 12 = ... = AP, are repeated. The correspondipglimensional

characteristic subspace is the spafldf, ..., LP}. The part of the original cell center flux
vectorF(U) that lies in this characteristic subspace is

F=1R, 4 f?R2 ... + PRP. (4)

Note that all of the characteristic fields contributing&ohave the same upwind direction
for interpolation, since their characteristic speeds (eigenvalues) are identical.

SinceF has a well-defined upwind direction, upwind differencing is possible witho
decomposingF further into the individual scalar fluxes. Instead, we can directly app
upwind interpolation to the cell center values of the ve@oim a component by component
fashion. LetF,, denote the resulting flux value interpolated to the cell wall of interest. The
the net cell wall flux required in the numerical method can be defined via the “partic
decomposed” form

Fuo =F, + fPPRE + (PP2RIZ + . 4 £]R], ®)

instead of the fully decomposed form in Eq. (3).

So far there is no obvious benefit to this formulation. The critical observation that ma
this partial decomposition useful is that we can comphteithout knowing the basis of
left and right eigenvectors used to define it in Eq. (4). Instead, it is simply the complen
of the remaining part of the decomposition, i.e.

F=FU) — (fPHRPT 4 fPH2RPF2 4 .y fPRT) . (6)

Thus, in order to apply a fully upwind scheme to a problem where one characteri
subspace has a repeated eigenvalue, all that is required are the left and right eigenv
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corresponding to complementary subspace. In practice, we simply define the cell wal
via Eq. (5) and comput&,, from F as calculated in Eq. (6), which requires only the le
and right eigenvectors associated Wit 2, ..., A" }. There is never any need to choose
basis for—or to characterize in any direct way—the subspace associated with the ref
eigenvalue.

The basic method of complementary projection is exceedingly simple. In the follow
remarks, we elaborate on its properties.

3. REMARKS

Remarkl. For a system with @-fold repeated eigenvalue, the above argument sho
the entire vector fieldF has not only a definite upwind direction, it actually has a wel
defined characteristic speed. Thus, further decomposition into scalar characteristic
does not provide any greater insight into the time evolution of the data. Instead, it is sir
an arbitrary decomposition into scalars that have no greater significance than the ¢
components ofF itself.

Thus it seems that if we consider only the quality of the computed solution, there i
motivation for further decomposition oF. Our numerical experiments on standard te
problems confirm this—i.e., there is no significant difference between solutions comp
using full or complementary projection.

Moreover, by not decomposing we can avoid the arbitrary selection of spannin
left and right eigenvectors for the degenerate subspace. This represents a reduction
need for tedious analysis, programming, and publishing, and can also noticeably re
computational costs.

Based on these factors, we strongly encourage practitioners to use the complemt
projection formulation for systems with a repeated eigenvalue.

Remark2. When applied to a system with a repeated eigenvalue having a large |
tiplicity, complementary projection may require fewer operations and therefore result
faster code. Let us compare the computational costs of full projection versus compleme
projection in detail.

We will express the cost as a function of the dimension of the undecomposed subs
p, and the overall system sineWe will compare only the cost of the portion of the probler
that is treated differently in each method, i.e. the cost of treating the fields with-tbiel
repeated eigenvalue.

The computational cost of a full decomposition into fhecalar fields ipWy + pWo,
whereW, is the average cost of projecting into and out of a field,\Afds the average cost
of doing a scalar upwind interpolation. The field projections require computjngr(U)
andf! R . These are operations anvectors, so the cost is proportionaltgandw, = an.
The cost of a scalar interpolation, has no dependence on system sizw multiplicity
p. Thus the total cost of the standard decomposition has thedm- pWp.

In the complementary projection method, the computational costds+ nWp, where
W; is the work per component required to comptfevia Eq. (6). This is proportional
to the number of terms which is — p, andW, = g(n — p). Thus the overall cost of
complementary projection takes the fogtm — p)n + nWp.

In the limit of a large system with a large multiplicity, the cost of the traditional meth
scales likepn, while the new method scales lika — p)n. If we further assume that the
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repeated eigenvalue dominates the system, sgttaminates1 — p (e.g., in the equations
for multispecies flomn — p = 2 asp, n — o0), then the complementary projection methoc
is asymptotically less costly than the traditional approach.

This analysis makes it clear that complementary projection carries out more upv
interpolations than the traditional approach (alwaysstead ofp), but it can save even
more work by avoidingp scalar field projections. However, use of a vectorizing or parall
computer could potentially alter this conclusion (e.g., by reducing the cost of the ve
inner products used for full projection).

Also note that it is possible to minimizZé/4 by making the eigensystems and R
collectively as sparse as possible. For example, consider multispeciasfliqw= 2, and
thus the complementary projection method scalelikéthe eigensystem was dense, ther
the full projection method scales lik&, while the sparse eigensystem chosen in [3] yielo
a full projection method which scales like

Remark3. Consider this projection technique on a more abstract level. We are abl
project onto the target subspace (and defffavithout a basis because we know the com
plementary projection explicitly. Thatigs = (I — P)F, whereP is the projection defined
explicitly by the known part of the eigensystem. Since we have all the information nee
to performP, we can perform the complement;- P, with no additional information.

This algebraic trick can only be used to define a single basis-free projection operatol
can project onto a subspaBgwithout a basis for it, given a basis for its complement. BL
if we need projection operators for two linearly independent subsga@ulS,, it is clear
that we must select a basis for at least one of them.

For example, this means that if the eigensystem of a flux fun&tith has two distinct,
repeated eigenvalues, it is not possible to separately upwind each associated charact
subspace without finding a basis fither one An eigenbasis must be selected for one c
the subspaces, and then the other can be treated without a basis.

Remarkd. In contrast to Remark 3, there is a special situation in which multiple co
plementary projections can be used efficiently within a single decomposition. If the f
Jacobian matrix has a block diagonal structure, it is possible to apply complementary
jection separately within each block. In particular, within each major block it is possible
treat a single repeated eigenvalue without ever constructing an eigenbasis for the asso
characteristic subspace.

To clarify the procedure in this case, Bt and B, be the image spaces RI' associated
with two distinct blocks in the diagonal of the Jacobian. Consider subsfgceesB; and
S C By, We will show it is possible to define the projections of@oand S, without
specifying a basis for either one.

Let P be the projection onto the complement®fin B;. Construction ofP, requires
knowing only a basis ilR" for the complement o in B;—which does not require choosing
a basis for the other subspa&, Then, projection ont& is defined in complementary
fashion a€Q; — P, whereQ; is the projection fronR" onto B;. Note that then x n matrix
Qj is trivial, since it is simply an identity matrix where the corresponding bl&;kin the
Jacobian is located, and zero elsewhere.

Remark5. Another important situation where this complementary projection can
of use is the upwind discretization of a weakly hyperbolic system. These systems |
characteristic subspaces that lack a basis of eigenvectors. The simplest example of «
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system is

Ui +aly +vg =0 (7)
v +avy =0, (8)

wherea is a real constant. The Jacobian is an irreducible Jordan block; it has repe
eigenvaluea, but only a one-dimensional family of eigenvectors spanned by (1, 0). -
traditional upwind technique requires a full eigensystem, and so it does not even a
However, this system can be upwinded with componentaisg@wind differencing and
special techniques for weakly hyperbolic systems which damp out the unwanted li
growth.

More generally, a subsystem locally equivalent can occur as a block inside a Iz
hyperbolic system. The traditional upwind technique requiring a full eigensystem a
does not apply. Still, as long as there is an eigenbasis for the other characteristic f
these fields can be upwinded in the standard way and the compleferdan be solved
componentwise, using special techniques for weakly hyperbolic systems. Note tha
standard alternative is to treat the entire system with the weakly hyperbolic solver and
degrade the quality of the solution in the fields which are not weakly hyperbolic. Fo
example of a system of practical interest, where this technique can be applied, see [2

In practice, a complicated hyperbolic system may develop a repeated eigenvalue ¢
come weakly hyperbolic (eigenvectors become depenttangientlyduring a calculation.
A full characteristic decomposition is appropriate as the primary numerical method,
some special “back-up” treatmentis required when these degenerate cases arise. The |
of complementary characteristic projection provides a convenient “back-up” formula
the flux in these circumstances.

Remarl6. Complementary projection can be used to upwind difference a character
subspace composed of characteristic fields moving aiiferent speedss long as they all
have the same upwind direction. l.e., Egs. (5) and (6) provide a stable upwind differer
of the system aslong as,, ..., AP are all of the same sign.

For an extreme example, one could lump together all the positive speed fields and |
componentwise upwinding witho decompositigrknowing only a basis for the negative
speed fields (which in contrast would be treated by standard decomposition into s
fields). Ifit so happened that all the fields were positive at some cell wall, upwind differenc
could be applied in a componentwise fashion to compute the cell wallRjuxvith no
characteristic field projections at all (thpe= n case).

However, lumping together fields moving at different speeds into a single undecomp
subspace is not as attractive as it is for the case of a repeated eigenvalue. The re
eigenvalue case is free of any negative consequences, while the more general appli
of complementary projection has several deficiencies.

One major deficit is that there is no savings in analytical work—formulas for the en
eigensystem must be available. To see why, note that since the characteristic spee
different they will notalwayshave the same upwind direction. Under the right conditio
they will differ in sign, and the associated fields cannot be lumped into a subspace
a single upwind direction. Since one must be prepared for this to occur, the characte
scalar decomposition must be available as an option for all fields, and so the asso«
eigenvectors must be known even if they are seldom used. Still, lumping together diffe
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fields can give amajor savings in computational work, because we only need this informe
when eigenvalues change sign.

There is another complication which can make complementary projection undesirab
this nonrepeated eigenvalue case. If fields moving at different speeds are lumpedinto a
subspace, there is the potential for a loss of resolution when two discontinuities propag
in different fields at different speeds move close together. In each individual character
scalar field there is only an isolated discontinuity; this will be resolved to the extent poss
by the chosen upwind scheme for all time. However, in a vector mixture of two discontinu
fields, both discontinuities could be present in the same vector component. Since they |
with different speeds, the faster discontinuity could overtake the slower one. No me
how fine the grid, as the discontinuities pass through each other there will be a tempc
loss of resolution. The resulting errors—which are avoided in the full decomposition—
seriously corrupt the calculation.

Remark7. In contrast to the loss of resolution difficulties mentioned in Remark 6, su
problems do not arise during calculations in the repeated eigenvalue case. Even if mu
discontinuities are present in different degenerate fields, because they move at the
speed, they cannot merge. A high accuracy upwind scheme will maintain resolution as
as the initial data was resolved by the grid. Further, even when it is possible in princi
there is no practical way to isolate the discontinuities by projecting them into differ
degenerate scalar fields. This is because there is no simple way to determine which ¢
infinitely many distinct decompositions will yield the desired separation of features.

Returning to the considerations in Remark 1, note that this reasoning does sugges
possible accuracy-related motivation for performing a full characteristic decompositiol
the repeated eigenvalue case. Namely, the possibility that one of the nonunique deco
sitions might yield a smoother set of scalar fields for scalar upwind differencing than th
provided by the components of the vector d&aHowever, there does not seem to be an
practical, general way of determining which of the infinitely many possible decompositit
would yield the smoothest set of scalar fields. In the absence of such knowledge, cor
mentary projection remains our recommended method for treating systems with repe
eigenvalues.

4. EXAMPLES

We illustrate this approach by considering a few common hyperbolic systems of ec
tions. All calculations were carried out using the ENO method described in [4], althot
complementary projection can be used with any characteristic upwinding scheme. |
eigenvalues and eigenvectors are all evaluated at cell walls. In what follows, we will
sume that this is given and drop the subscript “w” as a notational change only.)

4.1. 1D Euler Equations

This simple system provides a clear illustration of the operational differences betw
full decomposition and complementary projection. The 1D Euler equations are

Ut + [F(U)]x =0, 9)
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P pu
U=|pul|, FU=| pu?+p |, (10)
E (E + p)u
where
U2 f T
E:—p+7+ph, h(T)=h +/ Cp(s)ds. (1)
0

Heret is time, x is the spatial dimensiom, is the densityu is the velocity,E is the energy
per unit volumeh is enthalpy per unit mash, is the heat of formation or enthalpy at 0 K.
Gy is the specific heat at constant pressure, puglthe pressure [3].

We assume pressure is a function (or table lookup) of the density and internal energ
unit massp = p(p, €), and denote its corresponding partial derivativegppyand pe. The
Jacobian matrix oF(U) has eigenvalues

M=u—c 22=u, A3 =u+c (12)

and eigenvectors

b2 u —bJ_U 1 b]_
L= (24— = 2 ), 13
(2+Zc 2 2c 2) (13)

L2 =(1— by, byu, —by), (14)
b2 u —bJ_U 1 b]_
3=(=2_- - =, - = 1
(2 2c’ 2 +2c’2)’ (15)
1 1 1
R'=| u-c |, R?= u , R®=( u+c |, (16)
H —uc H-¢ H +uc
where
E+
c=\/p+ 2 H=—"P 7
P P
b1=ie2, b = 1+ byu? — by H. (18)
pC

Since all the eigenvalues are distinct, the above eigensystem is unique (up to ¢
multiples) and provides a good reference for comparison of full projection and compler
tary projection methods. We will use complementary projection to avoid decomposing
characteristic field moving with the flow velocity(the second field, au-field).

The vector flux contributions from the first and third fields are computed in the us
way, using eigenvector projection. Next we form

F =FU) — L'FU)R! - L]SF(L)R3. (19)

Note thatF is precisely the unprojected second fieRF(U)R?, yet it is obtained without
use ofl_2 orR?. We apply componentwise upwinding, in theu-upwind direction. Since
F is a three-dimensional vector, three upwind interpolations are required. The resu
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vector flux is combined with the contributions from the first and third fields to get the to
flux.

In contrast, the standard method would project the three-dimens®nato the one-
dimensional scalan-field and apply the upwind interpolation only once. Thus, the con
plementary projection method is more costly in this case.

In numerical experiments, we have noticed no difference between the complemer
calculations in the case of the 1D Euler equations, except that they run slower (as prec
since the savings occur as the number of repeated eigenvalues increases). Eveninthe
two shocks intersecting [1]—which causes atransient loss of resolution andis therefore
sensitive to different schemes—the numerical results agree quite nicely. Neither sct
seems to have an advantage over the other as far as accuracy or quality of the com
solutions are concerned.

As arepresentative example, consider Example 7 in[5] which is the celebrated Wood
and Colella “bang-bang” problem. Using the CPM, the convection step was 23% slowe|
predicted), although the quality of the solution is the same. In fact the pointwise rela
difference between the two solutions is on the order of10

4.2. 2D Euler Equations

This is a common system with a repeated eigenvalue. It also illustrates how compler
tary projection applies equally well to systems with multiple spatial dimensions.
The 2D Euler equations are

Ut + [F(U)lx + [GU)]y =0, (20)
0 g)u oV
u= |2 R = | P ew =] BT @
E (E+ pu (E+pw
where
E=—p+@+ph, h(T)=hf+/oTcp(S)ds (22)

Herey is the second spatial dimension, and the velocity in that dimension [3]. As in
the 1D Euler equationqy = p(p, €).

The eigenvalues and (one possible set of) eigenvectors for the Jacobian m&iiix of
are obtained by setting = 1 andB = 0 in the following formulas, while those for the
Jacobian of5(U) are obtained wittA=0 andB =1.

The eigenvalues are

AM=t—-c 22=2%3=0, A*=0+c, (23)

and the eigenvectors are

2 "2 2 220 2 2¢2

L1:<g+u bu A b Bbl)’ 24
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1—hb, v byu B b A b,

L2: — Ty T T Ty —— A A | 25
< 2 2 2 2 2 Jr2c 2 (25)
1-h 7 byu B b A b,

L3 = — et — 26
( 2 +2(:’ 2 22 2 2) (26)
b, a byu A byv B by

L= - — -+ —, =, 27
(2 2" 2 2 2 22 @)

1 1

1 u—Ac 2 u-—Bc

R _(UBC » R v+ Ac ’ (28)
H —0c H—b—11+f)c

1 1
R3 _ u-— Bc CRY= u-+ Ac ’ (29)
v— AcC v+ Bc
H—bi—vc H +Gc
1
where
g>=u’+v%, 0=Au+Bv, d=Av-—Bu, (30)
E+
c= /Pt 2 H==TP (31)
p P
b1=%, by = 1+ byg? — byH. (32)

Note that the choice of eigenvectors 1 and 4 is unique (up to scalar multiples), bu
choice for eigenvectors 2 and 3 is not unique. Any two independent vectors from the <
of eigenvectors 2 and 3 could be used instead.

To avoid choosing any basis for this ambiguous subspace, we apply the standard
acteristic scalar projections to the first and fourth fields, and then apply complemer
projection for theu-fields:

F =FU) — LIFU)R! — L*F(U)R™ (33)

We upwind differenceéF componentwise in the-upwind direction. The resultis then com-
bined with the flux contributions from the first and fourth fields. Note that the eigenvec
for the second and third fields were not needed for the discretization.

Four upwind interpolations are required to compute the contribution from the repe
eigenvalue for the complementary projection method, instead of only two upwind inte
lations if full projection were used. However, we also save two projections.

For a standard dimension by dimension discretization, the complementary proje
method applies independently of the flux for the second spatial dimension. Using the e
vectors appropriate fdg(U), we form

G =GU) - LIG(U)R! — L*G(U)R? (34)

and upwind differenc€ in the v-upwind direction.
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4.3. Multispecies Euler Equations
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The multispecies Euler equations provide an important example of a hyperbolic
tem with an eigenvalue repeated many times. Complementary projection becomes
attractive for such systems, due to the large analytical and computational savings.

The 2D Euler equations for multispecies flow with a totaNbEpecies are

0
ou
oV

U= E

pY1

OYN-1

Ut + [F(U)]x + [G(W)]y =0,

, FU) =

ou

puz+p
puUv

(E+ pu
puY

PUYN_1

)

G(U) =

oy
puv

pv?+p

(E+ pu
pvY1

PVvYN_1,

)

(35)

(36)

where
2 2 T
E:_p+M (Zy, ) hi(T):hif+/ Cpi(s)ds. (37)
0

Here,Y; is the mass fraction of specigd; is the enthalpy per unit mass of spedi;alsif is
the heat of formation of speciésandcp,i is the specific heat at constant pressure of speci
i [3]. Note thatYy =1 — St

The pressure is a function of the density, internal energy per unit mass, and the 1
fractions,p = p(p, €, Y1, ..., Yn_1), and the corresponding partial derivatives are denot
by p,. pe, andpy,.

The eigenvalues and (one possible set of) eigenvectors for the Jacobian mai{tix pf
are obtained by settind=1 and B =0 in the following formulas, while those for the
Jacobian matrix o6(U) useA =0andB = 1.

The eigenvalues are

AM=0-c, (38)
W= .. N2 g (39)
AN =l4c, (40)

Note the N + 1)-fold repeated eigenvalue.
A particularly sparse choice of left eigenvectors are given by the rows of the matrix

by 1] bs byu A byv B by —bi1z; —blzN,l
2txt? T2 Tz T2 7% 2 2 —2
1-— b2 — b3 bj_U b_|_v —bj_ b]_Z]_ b]_ZN_j_
0 B —A 0 o .- 0
-Y1 0 0 0 . (41)
: : : : |
—Yn-1 0 0 0
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and the corresponding sparse choice of right eigenvectors are given by the columns
matrix

1 1 0 O 0 1
u— Ac u B O 0 u+ Ac
v— Bc v —-A O 0 v+ Bc
H —dc H—b—l1 -0 z7 --- Zn-1 H+10Gc , (42)
Y1 Y1 0 Y1
: : : | :
YN_]_ YN_]_ 0 YN—l
wherel istheN — 1 by N — 1 identity matrix and
q?=u?+v% 0= Au+Bv, ?=Av—Buy, (43)
E+
c=y/m+ L H=""P (44)
o Iy
b= 2. by =1+bg? - biH, (45)
oC
N-—-1 —pv
bs = blZYi Z, z=—". (46)
i=1 pe

Note that the eigenvectors 2 throuyh-2 are not uniquely determined. Each one could |
replaced by an arbitrary linear combination of those shown, as long as linear indepent
is maintained. This gives an indication of the enormous range of possible eigensysten
could be used, although in practice they would yield similar computed solutions. (The ¢
may differ, although, depending on sparseness.)

In particular, all the fields in the eigensystem f&(U) have eigenvalu@, except for
the first and last. To avoid choosing any eigenbasis for this degenerate subspace, \
ply the standard projection method to the first and last fields and treat all-iledls by
complementary projection,

F =FQU) — L'FU)R! — LNBRU)RNH, (47)

We upwind differenceF in theu-upwind direction. The resulting cell wall flux is combinec
with the wall flux contributions from the first and the last fields to yield the net numeri
wall flux.

A total of N 4+ 3 upwind interpolations are required to compute the contribution frc
the repeated eigenvalue for the complementary projection method, instead & anly
upwind schemes if projection is used. Thus only two extra upwind interpolations are ne
to eliminateN + 1 characteristic projections. Starting at about four species, we exj
the complementary projection method to be less costly. Moreover, there is no ne
ever construct most of the eigensystem shown above. Had this approach been av:
for previous work, it would have allowed a major savings in analytic work, as well
programming and reporting.

For a dimension by dimension discretization, the same considerations apply to the
in the other spatial dimension. Using the first and last eigenvectors appropri@eor
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we form
G =G(U) — L'GU)R — LNB3GU)RNT3 (48)
and upwindg in the v-upwind direction.

Numerical experiments were carried out on examples from [3, 1]. For the case of |
species, the complementary calculations were faster than the traditional approach,
though the set of eigenvectors for the repeated eigenvalue had been carefully choser
as sparse as possible and the implementation took full advantage of the sparseness.
number of species is increased, the percentage savings in CPU time increases as we

As a particularly difficult example, we compute Example 5.1 from [3] which is a chel
ically reacting “Sod” shock tube problem. The convection step was 59% faster using
CPM, with no degradation in the quality of the solution. We show the solution in Fig. 1
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Og mif : OH mf ) ?-12% mf
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% 05 0.1 % 0.05 0.1 % 0.05 0.1
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0.5 0.4
' 0.2
0 0 0
o 0.05 0.1 0 0.05 0.1 0 0.05 0.1

FIG. 1. Thermally perfect solution (2300 steps).
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FIG. 2. Relative difference (2300 steps).

the relative difference in Fig. 2. The differences are on the order of about 1% and onl)
underresolved specieBlQ, andH,0,) differ by as much as 2%. The largest difference
occur near large gradients in the solution where the two schemes capture discontin
in slightly different ways. These differences are too small to be seen by the naked ey
have no effect on the size or strength of the discontinuities, only the intermediate p
which span the jumps. In fact, both schemes give the result depicted in Fig. 1.

We note that the standard scheme and the CPM have approximately the same CPl
when the eigenvalue is repeated four times. That is, for four species (three mass fre
equations) in one spatial dimension, for three species (two mass fraction equatior
two spatial dimensions, or for two species (one mass fraction equation) in three sy
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dimensions. After this point, the CPM is faster with the gains in CPU time proportional
the number of species.

5. CONCLUSIONS

We have introduced the complementary projection method for use in upwind differe
schemes for systems of hyperbolic conservation laws. This approach provides an
native to full characteristic decomposition of a characteristic subspace, if all associ
characteristic speeds are of the same sign. Instead, projection onto the subspace is ¢
as the complement of the projection onto the remaining characteristic spaces. This a
the application of any upwind method without the need of an eigenbasis for the spec
subspace. All that is required is a complete eigenbasis for the complementary subspa

This has particular application to problems with a repeated eigenvalue. There the eic
pace associated with the repeated eigenvalue does not have a unique eigenbasis. Th
plementary projection method eliminates the need to construct such a basis, withou
negative side effects, reducing the analytical and programming effort required to apply
wind differencing. Our analysis and experiments also show that avoiding the decompos
can save computational time in practical multispecies compressible flow calculations,
no significant change in computed results.

We recommend that in the future, practitioners use the complementary projection me
to treat hyperbolic systems with repeated eigenvalues.

This method has other potential applications. The most interesting is formulating upv
difference schemes for weakly hyperbolic systems. For these systems, a complete €
system does not exist, and thus traditional upwind characteristic schemes do not app
contrast, the complementary projection method provides a simple way to extend up\
differencing to these systems.
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